Regenrückhaltebecken BG Am Samhof - Ingolstadt

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A _E	m ²	18.200
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,36
undurchlässige Fläche	A_{u}	m^2	6.497
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	32,5
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	l/(s*ha)	50,0
gewählte Länge der Sohlfläche (Rechteckbecken)	Ls	m	30,4
gewählte Breite der Sohlfläche (Rechteckbecken)	b_s	m	3,2
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	1,32
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	5,5
Abminderungsfaktor	f_A	-	0,987

Eingaben außerhalb des Gültigkeitsbereichs, es werden folgende Werte verwendet: $qDr,R,u=40\ l/(s^*ha)$

Ergebnisse:

_Ligebinsse.			
maßgebende Dauer des Bemessungsregens	D	min	20
maßgebende Regenspende	$r_{D,n}$	I/(s*ha)	184,2
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	191
erforderliches Speichervolumen	V _{erf}	m ³	124
vorhandenes Speichervolumen	٧	m ³	128
Beckenlänge an Böschungsoberkante	Lo	m	30,4
Beckenbreite an Böschungsoberkante	b_o	m	3,2
Entleerungszeit	t _E	h	1,1

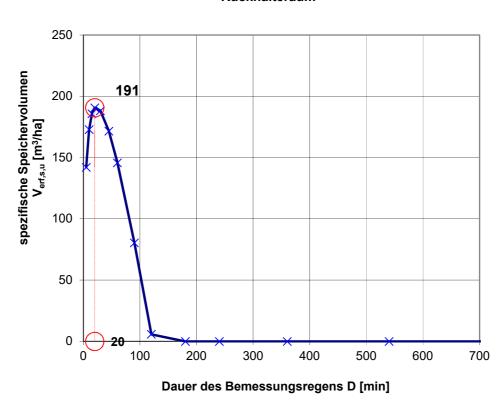
Bemerkungen:

10 jährige nur öffentliche Rehau Speicherk Wiederkehrz Flächen, private Speicher ooeffizeie eit; KOSTRA-Flächen auf box nt 0,95 DWD 2020 Drossel 0,8*0,8*0, aufsummieren 66*2 22,5 l/s

Gesamt 50l/s Doppella

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	450,0
10	293,3
15	224,4
20	184,2
30	138,3
45	103,7
60	84,2
90	62,6
120	50,7
180	37,6
240	30,4
360	22,5
540	16,7
720	13,5
1080	10,0
1440	8,0
2880	4,8
4320	3,6


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
142
173
186
191
188
172
146
80
6
0
0
0
0
0
0
0
0
0

Rückhalteraum

BG AM Samhof WA5 3300 m² (Exemplarisch für WA6, WA7, WA3 und WA4)

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A _E	m^2	3.300
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,16
undurchlässige Fläche	A_{u}	m^2	541
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	2,0
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	l/(s*ha)	37,0
gewählte Länge der Sohlfläche (Rechteckbecken)	Ls	m	0,0
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	0,0
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f_A	-	

Ergebnisse:

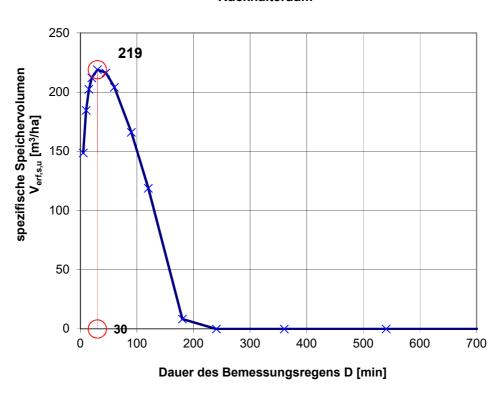
maßgebende Dauer des Bemessungsregens	D	min	30
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	138,3
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	219
erforderliches Speichervolumen	V_{erf}	m ³	12
vorhandenes Speichervolumen	٧	m ³	
Beckenlänge an Böschungsoberkante	L _o	m	
Beckenbreite an Böschungsoberkante	b_o	m	
Entleerungszeit	t_{E}	h	

Bemerkungen:

10 jährige Wiederkehrz eit; KOSTRA-DWD 2020

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	450,0
10	293,3
15	224,4
20	184,2
30	138,3
45	103,7
60	84,2
90	62,6
120	50,7
180	37,6
240	30,4
360	22,5
540	16,7
720	13,5
1080	10,0
1440	8,0
2880	4,8
4320	3,6


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
149
185
202
212
219
216
204
166
119
8
0
0
0
0
0
0
0
0

Rückhalteraum

BG AM Samhof WA9 2940 m²	ВG	AM	Samhof	WA9	2940	m²
---------------------------	----	----	--------	-----	------	----

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A_{E}	m^2	2.940
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,13
undurchlässige Fläche	A_{u}	m^2	382
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	2,0
Drosselabflussspende bezogen auf A _u	$q_{\mathrm{Dr},\mathrm{R},\mathrm{u}}$	l/(s*ha)	52,3
gewählte Länge der Sohlfläche (Rechteckbecken)	Ls	m	0,0
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	0,0
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f_A	-	

Eingaben außerhalb des Gültigkeitsbereichs, es werden folgende Werte verwendet: $qDr,R,u=40\ l/(s^*ha)$

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	20
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	184,2
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	190
erforderliches Speichervolumen	V _{erf}	m ³	7
vorhandenes Speichervolumen	٧	m ³	
Beckenlänge an Böschungsoberkante	L _o	m	
Beckenbreite an Böschungsoberkante	b _o	m	
Entleerungszeit	t_{E}	h	

Bemerkungen:

10 jährige Wiederkehrz eit; KOSTRA-DWD 2020

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	450,0
10	293,3
15	224,4
20	184,2
30	138,3
45	103,7
60	84,2
90	62,6
120	50,7
180	37,6
240	30,4
360	22,5
540	16,7
720	13,5
1080	10,0
1440	8,0
2880	4,8
4320	3,6


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
143
173
186
190
186
166
138
67
0
0
0
0
0
0
0
0
0
0

Rückhalteraum

BG AM Samhof WA10 3*1000 m²

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A _E	m^2	1.000
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,22
undurchlässige Fläche	A_{u}	m^2	220
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	0,5
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	l/(s*ha)	22,7
gewählte Länge der Sohlfläche (Rechteckbecken)	L _s	m	0,0
gewählte Breite der Sohlfläche (Rechteckbecken)	b_s	m	0,0
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f_A	-	

Ergebnisse:

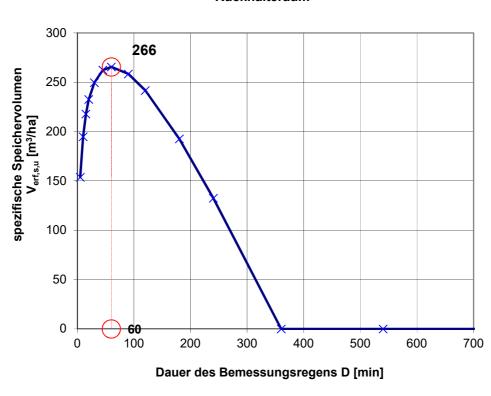
maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	84,2
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	266
erforderliches Speichervolumen	V_{erf}	m ³	6
vorhandenes Speichervolumen	٧	m ³	
Beckenlänge an Böschungsoberkante	L _o	m	
Beckenbreite an Böschungsoberkante	b_o	m	
Entleerungszeit	t _E	h	

Bemerkungen:

10 jährige Wiederkehrz eit; KOSTRA-DWD 2020

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]			
5	450,0			
10	293,3			
15	224,4			
20	184,2			
30	138,3			
45	103,7			
60	84,2			
90	62,6			
120	50,7			
180	37,6			
240	30,4			
360	22,5			
540	16,7			
720	13,5			
1080	10,0			
1440	8,0			
2880	4,8			
4320	3,6			


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
154
195
218
233
250
262
266
258
242
193
133
0
0
0
0
0
0
0

Rückhalteraum

BG AM Samhof WA11 1690m²

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A_{E}	m ²	1.690
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,14
undurchlässige Fläche	A_{u}	m ²	237
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m ³	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	0,5
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	l/(s*ha)	21,1
gewählte Länge der Sohlfläche (Rechteckbecken)	Ls	m	0,0
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	0,0
gewählte max. Einstauhöhe (Rechteckbecken)	Z	m	0
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f _A	-	

Ergebnisse:

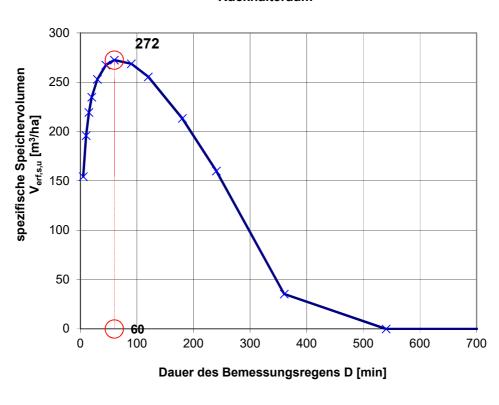
maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	84,2
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	272
erforderliches Speichervolumen	V_{erf}	m ³	6
vorhandenes Speichervolumen	٧	m ³	
Beckenlänge an Böschungsoberkante	L _o	m	
Beckenbreite an Böschungsoberkante	b_o	m	
Entleerungszeit	t _E	h	

Bemerkungen:

10 jährige Wiederkehrz eit; KOSTRA-DWD 2020

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	450,0
10	293,3
15	224,4
20	184,2
30	138,3
45	103,7
60	84,2
90	62,6
120	50,7
180	37,6
240	30,4
360	22,5
540	16,7
720	13,5
1080	10,0
1440	8,0
2880	4,8
4320	3,6
-	


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
154
196
220
235
253
268
272
269
255
213
160
35
0
0
0
0
0
0

Rückhalteraum

BG AM Samhof WA12 3*1000m²

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A _E	m ²	1.000
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,13
undurchlässige Fläche	A_{u}	m^2	130
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	0,5
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	l/(s*ha)	38,5
gewählte Länge der Sohlfläche (Rechteckbecken)	Ls	m	0,0
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	0,0
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f_A	-	

Ergebnisse:

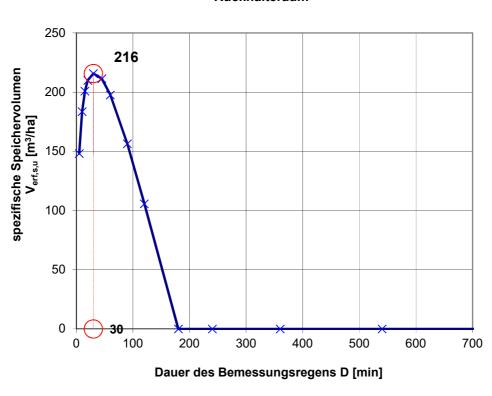
D	min	30
$r_{D,n}$	l/(s*ha)	138,3
$V_{erf,s,u}$	m³/ha	216
V _{erf}	m ³	3
V	m ³	
Lo	m	
b _o	m	
t _E	h	
	r _{D,n} V _{erf,s,u} V _{erf} V L _o b _o	r _{D,n} I/(s*ha) V _{erf,s,u} m³/ha V _{erf} m³ V m³ L _o m b _o m

Bemerkungen:

10 jährige Wiederkehrz eit; KOSTRA-DWD 2020

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	450,0
10	293,3
15	224,4
20	184,2
30	138,3
45	103,7
60	84,2
90	62,6
120	50,7
180	37,6
240	30,4
360	22,5
540	16,7
720	13,5
1080	10,0
1440	8,0
2880	4,8
4320	3,6


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
148
183
201
210
216
211
198
156
106
0
0
0
0
0
0
0
0
0

Rückhalteraum

BG AM Samhof WA13 2190 m ²	BG AM	Samhof	WA13	2190	m²
---------------------------------------	-------	--------	------	------	----

Auftraggeber:

Kommunalbetriebe Ingolstadt

Rückhalteraum:

Eingabedaten:

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$

Einzugsgebietsfläche	A _E	m ²	2.190
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,17
undurchlässige Fläche	A_{u}	m^2	372
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	0,0
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	0,0
Drosselabfluss	Q_{Dr}	l/s	2,0
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	I/(s*ha)	53,7
gewählte Länge der Sohlfläche (Rechteckbecken)	L _s	m	0,0
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	0,0
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	0,0
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f _A	-	

Eingaben außerhalb des Gültigkeitsbereichs, es werden folgende Werte verwendet: $qDr,R,u=40\ l/(s^*ha)$

Ergebnisse:

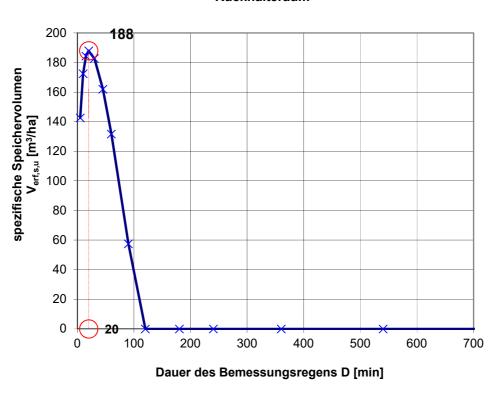
maßgebende Dauer des Bemessungsregens	D	min	20
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	184,2
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	188
erforderliches Speichervolumen	V _{erf}	m ³	7
vorhandenes Speichervolumen	٧	m ³	
Beckenlänge an Böschungsoberkante	L _o	m	
Beckenbreite an Böschungsoberkante	b_o	m	
Entleerungszeit	t_{E}	h	

Bemerkungen:

10 jährige Wiederkehrz eit; KOSTRA-DWD 2020

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	450,0
10	293,3
15	224,4
20	184,2
30	138,3
45	103,7
60	84,2
90	62,6
120	50,7
180	37,6
240	30,4
360	22,5
540	16,7
720	13,5
1080	10,0
1440	8,0
2880	4,8
4320	3,6


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
143
172
184
188
183
162
132
58
0
0
0
0
0
0
0
0
0
0

Rückhalteraum

